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1. Introduction and Background
The aim of this paper is to investigate the existence of infinitely many classical solutions

for the following nonlinear impulsive fractional boundary value problem (BVP, for short):

(P f
λ )

tD
α
T (c0D

α
t u(t)) + a(t)u(t) = λf(t, u(t)), t ̸= tj , a.e. t ∈ [0, T ],

∆
(
tD

α−1
T (c0D

α
t u)
)
(tj) = Ij(u(tj)), j = 1, . . .m,

u(0) = u(T ) = 0

where α ∈ (12 , 1], a ∈ C([0, T ]) such that there are a0, a1 > 0 such that 0 < a0 ≤ a(t) ≤ a1,

λ > 0, f : [0, T ] × R → R is an L1-Carathéodory function, 0 = t0 < t1 < · · · < tn <
tn+1 = T , ∆(tD

α
T (c0D

α
t u(t)))(tj) = tD

α
T (c0D

α
t u(t)) (t

+
j )− tD

α
T (c0D

α
t u(t)) (t

−
j ) and Ij : R → R,

j = 1, . . . ,m are continuous.
Fractional differential equations arise in many engineering and scientific disciplines as the

mathematical modeling of systems and processes in the fields of physics, chemistry, aerody-
namics, electrodynamics of complex medium or polymer rheology. On this kind of equations
the derivatives of fractional order [18, 19, 20] are involved. The interest of the study of
fractional-order differential equations lies in the fact that fractional-order models are more
accurate than integer-order models, that is, there are more degrees of freedom in the fractional-
order models. Furthermore, fractional derivatives provide an excellent instrument for the
description of memory and hereditary properties of various materials and processes due to
the existence of a “memory” term in a model. This memory term insures the history and its
impact to the present and future, see [26]. In consequence, the subject of fractional differen-
tial equations is gaining much importance and attention. For details, see [4, 6, 8, 10] and the
references therein.
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In recent years, a great deal of work has been done in the study of the existence of so-
lutions for impulsive boundary value problems (IBVPs for short), by which a number of
chemotherapy, population dynamics, optimal control, ecology, industrial robotics and physics
phenomena are described. For the general aspects of impulsive differential equations, we refer
the reader to the classical monograph [22]. For some general and recent works on impulsive
differential equations studied via variational methods and critical point theory, we refer the
reader to [1, 2, 13, 14, 15, 16] and the references therein.

Due to the great development in the theory of fractional calculus and impulsive differential
equations as well as having wide applications in several fields. On the other hand, in recent
years, some researchers have used variational methods to study the existence of solutions for
fractional differential equations with impulses, see for instance, [5, 7, 11] and the references
therein for detailed discussions.

Motivated by the above works, in this paper, by using some critical theorems obtained in
[23, Theorem 9.12] which we recall in the next section (see Theorem 2.1), under Ambrosetti-
Rabinowitz condition (AR) on the nonlinear term and impulsive functions we discuss the
existence of infinitely many classical solutions for the problem (P f

λ ) (see Theorem 3.1). We
present Example 3.5, in which the hypotheses of Theorem 3.1 are fulfilled. In Theorem 3.6
we discuss the existence of infinitely many solutions for the problem (P f

λ ) when the nonlinear
term is superlinear.

2. Preliminaries
In this section, we formulate our main results on the existence infinitely many weak solu-

tions for the problem (P f
λ ). Our main tool to ensure the results is Theorem 9.12 of [23] that

we now recall here.

Theorem 2.1. [23, Theorem 9.12] Let X be an infinite dimensional real Banach space. Let
φ ∈ C1(X,R) be an even functional which satisfies the PS condition, and φ(0) = 0. Suppose
that X = V ⊕ E, where V is infinite dimensional, and φ satisfies that

(i) there exist α > 0 and ρ > 0 such that φ(u) ≥ α for all u ∈ E with ∥u∥ = ρ,
(ii) for any finite dimensional subspace W ⊂ X, there is R = R(W ) such that φ(u) ≤ 0

on W \BR(W ).

Then φ possesses an unbounded sequence of critical values.

Theorem 2.1 has been successfully used to ensure the existence of infinitely many solutions
for boundary value problems in the papers [3, 12, 24].

To create suitable function spaces and apply critical point theory to explore the existence
of solutions for the problem (P f

λ ), we require the following essential notations and findings
which will be used in establishing our main results.

Definition 2.2. [18] For a function f defined on [0, T ] and α > 0, the left and right Riemann-
Liouville fractional integrals of order α for the function f are defined by

0D
−α
t f(t) =

1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t ∈ [0, T ]

and

tD
−α
T f(t) =

1

Γ(α)

∫ T

t
(s− t)α−1f(s)ds, t ∈ [0, T ]
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while the right-hand sides are point-wise defined on [0, T ] where Γ(α) is the gamma function.

Definition 2.3. [18] Let a, T ∈ R and AC([0, T ]) be the space of absolutely continuous
functions on [0, T ]. For 0 < α ≤ 1, f ∈ AC([0, T ]) left and right Riemann-Liouville and
Caputo fractional derivatives are defined by:

0D
α
t f(t) ≡

d

dt
0D

α−1
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−αf(s)ds,

tD
α
T f(t) ≡ − d

dt
tD

α−1
T f(t) = − 1

Γ(1− α)

∫ T

t
(s− t)−αf(s)ds,

c
0D

α
t f(t) ≡ cDα

0+f(t) := 0D
α−1
t f ′(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αf ′(s)ds

and
c
tD

α
T f(t) ≡ cDα

T−f(t) := −tD
α−1
T f ′(t) = − 1

Γ(1− α)

∫ T

t
(s− t)−αf ′(s)ds

where Γ(α) is the gamma function. Note that when α = 1, c
0D

1
t f(t) = f ′(t) and c

tD
1
T f(t) =

−f ′(t).

We have the following property of fractional integration.

Proposition 2.4. [18, 21] We have the following property of fractional integration∫ T

0
[0D

−γ
t f(t)]g(t)dt =

∫ T

0
[tD

−γ
T g(t)]f(t)dt, γ > 0,

provided that f ∈ Lp([0, T ],RN ), g ∈ Lq([0, b],RN ) and p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1 + γ or
p ̸= 1, q ̸= 1, 1/p+ 1/q = 1 + γ.

Let 0 < α ≤ 1, 1 < p < ∞ and Eα,p
0 (0, T ) be the Banach space, which is closure of

C∞
0 ([0, T ]) with respect to the norm

∥u∥p
Eα,p
0 (0,T )

= ∥caDα
t u(t)∥

p
Lp(0,T ) + ∥u∥pLp(0,T ).

It is an established fact that Eα,p
0 (0, T ) is a reflexive and separable Banach space (see [17,

Proposition 3.1]). In short Eα,2
0,T = Eα, and by ∥.∥ and ∥.∥∞ the norms in L2(0, T ) and

C([0, T ]):

∥u∥2 =
∫ T

0
|u(t)|2 dt, u ∈ L2[0, T ]

and
∥u∥∞ = max

t∈[0,T ]
|u(t)|, u ∈ C([0, T ]).

Eα is a Hilbert space with inner product

(u, v)α =

∫ T

0
(c0D

α
t u(t)

c
0D

α
t v(t) + u(t)v(t)) dt

and the norm

∥u∥2α =

∫ T

0

(
|c0Dα

t u(t)|2 + |u(t)|2
)
dt.
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Pay attention that if a ∈ C([0, T ]) and there are two positive constants a1 and a2, so that
0 < a1 ≤ a(t) ≤ a2, an equivalent norm in Eα is

∥u∥2a,α =

∫ T

0

(
|c0Dα

t u(t)|2 + a(t)|u(t)|2
)
dt.

Proposition 2.5. [17] Let 0 < α ≤ 1. For every u ∈ Eα, we have

(2.1) ∥u∥ ≤ Tα

Γ(α+ 1)
∥c0Dα

t u∥.

In addition, for 1
2 < α ≤ 1,

∥u∥∞ ≤ Tα−1/2

Γ(α)(2α− 1)1/2
∥c0Dα

t u∥.

By (2.1), we can take Eα with the norm

∥u∥0,α =

(∫ T

0
|c0Dα

t u(t)|2dt
)1/2

= ∥c0Dα
t u∥, ∀u ∈ Eα

in the following literature.
By Proposition 2.5, when α > 1/2, for every u ∈ Eα, we have

(2.2) ∥u∥∞ ≤ k

(∫ T

0
|c0Dα

t u(t)|2dt
)1/2

= k∥u∥0,α < k∥u∥a,α

where

k =
Tα− 1

2

Γ(α)
√
2α− 1

.

Here we give the definition of weak and classical solutions for the problem (P f
λ ) as below:

Definition 2.6. A function u ∈ Eα is said to be a weak solution of the problem (P f
λ ), if for

every v ∈ Eα, ∫ T

0
[(c0D

α
t u(t))(

c
0D

α
t v(t)) + a(t)u(t)v(t)] dt+

m∑
j=1

Ij(u(tj))v(tj)

− λ

∫ T

0
f(t, u(t)) v(t)dt = 0.

Definition 2.7. A function

u ∈

{
u ∈ AC([0, T ]) :

∫ tj+1

tj

(
|c0Dα

t u(t)|2 + |u(t)|2
)
dt < ∞, j = 0, . . . ,m

}
is called to be a classical solution of problem (P f

λ ) if

tD
α
T (c0D

α
t u(t)) + a(t)u(t) = λf(t, u(t)) + h(u(t)), a.e. t ∈ [0, T ]\{t1, . . . , tm},

the limits tD
α−1
T (c0D

α
t u) (t

+
j ) and tD

α−1
T (c0D

α
t u) (t

−
j ) exist, ∆

(
tD

α−1
T (c0D

α
t u)
)
(tj) = Ij(u(tj))

and u(0) = u(T ) = 0.

Lemma 2.8. [9, Lemma 2.1] The function u ∈ Eα is a weak solution of (P f
λ ) if and only if

u is a classical solution of (P f
λ ).
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For each u ∈ Eα, consider the functional φ defined on Eα by

(2.3) φ(u) =
1

2
∥u∥2a,α +

m∑
j=1

∫ u

0
Ij(ξ)dξ − λ

∫ T

0
F (t, u(t))dt.

It is clear that φ is differentiable at any u ∈ Eα and

φ′(u)(v) =

∫ T

0
[(c0D

α
t u(t))(

c
0D

α
t v(t)) + a(t)u(t)v(t)] dt+

m∑
j=1

Ij(u(tj))v(tj)

−λ

∫ T

0
f(t, u(t))v(t)dt(2.4)

for any v ∈ Eα. Obviously, φ′ is continuous.
Corresponding to the functions f and Ij , j = 1 . . . ,m, we introduce the functions F :

[0, T ]× R −→ R and Jj : [0, T ]× R −→ R, j = 1, . . . ,m , respectively, as follows

F (t, ξ) =

∫ ξ

0
f(t, x)dx, for all (t, ξ) ∈ [0, T ]× R

and
Jj(x) =

∫ x

0
Ij(ξ)dξ, j = 1, . . . ,m for every x ∈ R.

3. Main result
In this section, we formulate our main results on the existence infinitely many classical

solutions for the problem (P f
λ ).

Theorem 3.1. Suppose that the following conditions are satisfied:
(A1) there exists a constant ν > 2 such that

0 < νF (t, u) ≤ uf(t, u) for all (t, u) ∈ [0, T ]× R\{0},
(A2)

0 < uIj(u) ≤ ν

∫ ξ

0
Ij(s)ds for all ξ ∈ R\{0}, j = 1, . . . ,m.

Moreover, if f(t, u) and Ij are odd about u, then the impulsive problem (P f
λ ) has infinitely

many classical solutions for λ > 0.

Lemma 3.2. Assume that (A1)− (A2) hold and λ > 0. Then φ(u) satisfies the Palais-Smale
condition.

Proof. Let {un} be a sequence in Eα such that {φ(un)} is bounded and φ′(un) → 0 as
n → +∞. First, we prove that {un} is bounded. By (2.3) and (2.4), one has

νφ(un)− φ′(un)(un) =
(ν
2
− 1
)
∥un∥2a,α

+ν
m∑
j=1

∫ un(tj)

0
Ij(s)ds−

m∑
j=1

Ij(un(tj))un(tj)

−λ

∫ T

0
(νF (t, un(t))− f(t, un(t))un(t)) dt.
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By (A1) and (A2), one has

ν

m∑
j=1

∫ un(tj)

0
Ij(s)ds−

m∑
j=1

Ij(un(tj))un(tj) ≥ 0(3.1)

and

λ

(∫ T

0
f(t, un(t))un(t)dt− ν

∫ T

0
F (t, un(t))dt

)
≥ 0.(3.2)

By considering (3.1)-(3.2), we conclude that

νφ(un)− φ′(un)(un) ≥
(ν
2
− 1
)
∥un∥2a,α.

Since ν > 2 this implies that {un} is bounded. Consequently, as Eα is a reflexive Banach
space, we have, up to a subsequence,

un ⇀ u in Eα,

un → u in C[0, T ]

and
un → u a.e. on [0, T ].

By φ′(un) → 0 and un → u, we obtain that(
φ′(un)− φ′(u)

)
(un − u) → 0.

From the continuity of f and Ij (j = 1, . . . ,m), we know that∫ T

0
(f(t, un(t))− f(t, u(t))) (un(t)− u(t))dt → 0, as n → ∞

and
m∑
j=1

(Ij(un(tj))− Ij(u(tj))) (un(tj)− u(tj)) → 0, as n → ∞.

Moreover, an easy computation shows that(
φ′(un)− φ′(u)

)
(un − u)

=

∫ T

0
[(c0D

α
t un(t)− c

0D
α
t u(t)) (

c
0D

α
t un(t)− c

0D
α
t u(t)) + a(t)(un(t)− u(t))(un(t)− u(t))] dt

+
m∑
j=1

(Ij(un(tj)− Ij(u(tj)) (un(tj)− u(tj))

−λ

∫ T

0
(f(t, un(t)− f(t, u(t))(un(t)− u(t))dt

≥∥un − u∥2a,α.

Thus
lim
n→∞

(
φ′(un)− φ′(u)

)
(un − u) ≥ lim

n→∞
∥un − u∥2a,α.

So ∥un − u∥a,α → 0 as n → ∞, which implies that {un} converges strongly to u in Eα.
Therefore, φ satisfies the Palais-Smale condition. □
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Lemma 3.3. [25, Lemma 2.2] Assume that (A1) holds. Then, for every t ∈ [0, T ], the
following inequalities hold:

F (t, x) ≤ F

(
t,

x

|x|

)
|x|ν if 0 < |x| ≤ 1

and

F (t, x) ≥ F

(
t,

x

|x|

)
|x|ν if |x| ≥ 1.

In view of Lemma 3.3, (A1) implies that, for every t ∈ [0, T ]

F (t, x) ≤ M |x|ν if 0 < |x| ≤ 1(3.3)
and

F (t, x) ≥ m|x|ν if |x| ≥ 1(3.4)
where M = maxt∈[0,T ],|x|=1 F (t, x), m = mint∈[0,T ],|x|=1 F (t, x). Thanks to (A1), one has
M > 0 and m > 0. Since F (t, x) − m|x|β is continuous on [0, T ] × [−1, 1], there exists a
constant C2 such that

F (t, x) ≥ m|x|ν − C2 for every (t, x) ∈ [0, T ]× [−1, 1].(3.5)
So it follows from (3.4) and (3.5) that

F (t, x) ≥ m|x|ν − C2 for every (t, x) ∈ [0, T ]× R.(3.6)

Remark 3.4. From (A2), we can obtain that there exist constants a, b > 0 such that∫ ξ

0
Ij(s)ds < a|ξ|ν + b(3.7)

for all ξ ∈ R.

Proof of Theorem 3.1. Using the continuity of f and Ij , j = 1, . . . ,m, we obtain that
φ(u) is continuously and differentiable. In view of (2.3), it is obvious that φ(u) is even and
φ(0) = 0. First, we show that φ satisfies condition (i) in Theorem 2.1. For any u ∈ Eα, by
(2.3) and (A2), one has

φ(u) =
1

2
∥u∥2a,α +

m∑
j=1

Jj(u(tj))− λ

∫ T

0
F (t, u(t))dt

≥1

2
∥u∥2a,α − λ

∫ T

0
F (t, u(t))dt.

It is clear that ∥u∥a,α ≤ 1

k
implies ∥u∥∞ ≤ 1. Thanks to (3.3), one has∫ T

0
F (t, u(t))dt ≤ M

∫ T

0
|u|νdt ≤ MTkν∥u∥νa,α, ∥u∥a,α ≤ 1

k
.(3.8)

Combining (3.8) and (A1), one has

φ(u) ≥ 1

2
∥u∥a,α − λMTkν∥u∥νa,α.

Which implies that we can choose ρ > 0 small enough such that φ(u) ≥ α > 0 with ∥u∥ = ρ.
Second, we show that φ satisfies condition (ii) in Theorem 2.1. Let W ⊂ Eα is a finite
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dimensional subspace. For every r ∈ R \ {0} and u ∈ W \ {0} with ∥u∥a,α = 1, by (3.6)-(3.7),
we can imply that

φ(ru) =
1

2
∥ru∥2a,α +

m∑
j=1

∫ ru(t)

0
Ij(s)ds− λ

∫ T

0
F (t, ru(t))dt

≤ r2

2
∥u∥2a,α +

m∑
j=1

(a|r|ν |u(t)|ν + b)− λ|r|νm
∫ T

0
|u(t)|νdt+ λTC2.

Noting that ν > 2, the above inequality implies that there exists r0 such that ∥ru∥ > ρ
and φ(ru) < 0 for every r ≥ r0 > 0. Since W is a finite dimensional subspace, there exists
R(W ) > 0 such that φ(u) ≤ 0 on W \BR(W ). According to Theorem 2.1, the functional φ(u)
possesses infinitely many critical points, i.e. the impulsive problem (P f

λ ) has infinitely many
classical solutions. □

Now, we illustrate Theorem 3.1 by presenting the following example.
Example 3.5. Consider the problem

(3.9)
tD

α
1 (c0D

α
t u(t)) + u(t) = λf(t, u), t ̸= 1

2
, a.e. t ∈ [0, 1],

∆
(
tD

α−1
1 (c0D

α
t u)
)
(
1

2
) = I1(u(

1

2
)),

u(0) = u(1) = 0

where
f(t, u) = t2

(
u3 + u3eu

4
+ u7eu

4
)

for every (t, u) ∈ [0, 1]× R and I1(ζ) =
1

5
ζ for each ζ ∈ R. By the expression of f , we have

F (t, u) = t2

(
u4

4
+

u4eu
4

4

)
for every (t, u) ∈ [0, 1]×R. By choosing ν = 4 > 2, the assumptions (A1) and (A2) are fulfilled.
Since f(t, u) and I1 are odd about u, we clearly see that all assumptions of Theorem 3.1 are
fulfilled. Therefore, the impulsive problem (3.9) has infinitely many classical solutions.
Theorem 3.6. Suppose that the following conditions are satisfied:

(A3) there exist constants R > 0 and 0 < λL1 <
1

2Tk2
such that

F (t, u) ≤ L1|u|2 for all (t, u) ∈ [0, T ]× R, |u| ≤ R,

(A4) F (t, u) ≥ 0 for all (t, u) ∈ [0, T ]× R and there exist constants R1 > 0, δ1 > 0 and
α1 > ν such that

F (t, u) ≥ δ1|u|α1 for all (t, u) ∈ [0, T ]× R, |u| ≥ R,

(A5) there exists a constant ν > 2, δ1 ≥ 0 and 0 < α2 < 2 such that
νF (t, ξ)− ξf(t, ξ) ≤ δ2|u|α2 ,

(A6)

0 < uIj(u) ≤ ν

∫ ξ

0
Ij(s)ds, j = 1, . . . ,m.
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Moreover, if f(t, u) and Ij for j = 1, . . . ,m are odd about u, then the impulsive problem (P f
λ )

has infinitely many classical solutions for λ > 0.

Lemma 3.7. Under the assumptions of Theorem 3.6, φ(u) satisfies the Palais-Smale condi-
tion.

Proof. Let {un} be a sequence in Eα such that {φ(un)} is bounded and φ′(un) → 0 as
n → +∞. By (2.3), (2.4) and (A5), one has

νφ(un)− φ′(un)(un) =
(ν
2
− 1
)
∥un∥2a,α

+ ν
m∑
j=1

∫ un(tj)

0
Ij(s)ds−

m∑
j=1

Ij(un(tj))un(tj)

− λ

∫ T

0
(νF (t, un(t))− f(t, un(t))un(t)) dt

≥
(ν
2
− 1
)
∥un∥2a,α − λTδ2C

α2∥un∥α2
a,α.

Since 0 < α2 < 2 it follows that {un} is bounded on Eα. The proof of the PS condition is
similar to that in Lemma 3.3. We omit it here. □

Proof. Using the continuity of f and Ij for j = 1, 2, . . . ,m, we obtain that φ(u) is continuously
and differentiable. In view of (2.3), it is obvious that φ(u) is even and φ(0) = 0. By Lemma
3.7, φ(u) satisfies the PS condition. First, we show that φ satisfies condition (i) in Theorem

2.1. It is clear that ∥u∥a,α ≤ Γ(α)
√
2α− 1

Tα− 1
2

R =
1

k
R implies ∥u∥∞ ≤ R. Thanks to (A3), one

has

λ

∫ T

0
F (t, u(t))dt ≤ λL1

∫ T

0
|u|2dt ≤ λL1Tk

2∥u∥2a,α, ∥u∥a,α ≤ R

k
.(3.10)

Combining (3.10) and (A6), one has

φ(u) ≥ 1

2
∥u∥2a,α − λL1Tk

2∥u∥2a,α =

(
1

2
− λL1Tk

2

)
∥u∥2a,α.

Which implies that we can choose ρ > 0 small enough such that φ(u) ≥ α > 0 with ∥u∥ = ρ.
Second, we show that φ satisfies condition (ii) in Theorem 2.1. Let W ⊂ Eα is a finite di-
mensional subspace. According to Remark 3.4, it follows from (A6) that there exist constants
a, b, c, d > 0 such that ∫ ξ

0
Ij(s)ds < a|u|ν + b(3.11)

for all u ∈ R. By (A4), we can imply that there exists a constant C3 > 0 such that

F (t, x) ≥ δ1|x|α1 − C3 for every (t, x) ∈ [0, T ]× R.(3.12)
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For every r ∈ R \ {0} and u ∈ W \ {0} with ∥u∥a,α = 1, by (3.11)-(3.12), we can imply that

φ(ru) =
1

2
∥ru∥2a,α +

m∑
j=1

∫ ru(tj)

0
Ij(s)ds

− λ

∫ T

0
F (t, ru(t))dt

≤ r2

2
∥u∥2a,α +

m∑
j=1

c|r|ν |u(t)|ν + b

− λ|r|α1δ1

∫ T

0
|u(t)|α1dt+ λTC3.

Noting that α1 > ν, the above inequality implies that there exists r0 such that ∥ru∥a,α > ρ
and φ(ru) < 0 for every r ≥ r0 > 0. Since W is a finite dimensional subspace, there exists
R(W ) > 0 such that φ(u) ≤ 0 on W \BR(W ). □

Conclusion
We studied a class of impulsive fractional boundary value problems. We discussed the

existence of infinitely many solutions for the problem employing a recent variational meth-
ods for smooth functionals defined on reflexive Banach spaces under Ambrosetti-Rabinowitz
condition (AR) on the nonlinear term and impulsive functions. We discussed the existence of
infinitely many solutions for the problem when the nonlinear term is superlinear.
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